Flow Measurement and Instrumentation 67 (2019) 41-54

Contents lists available at ScienceDirect

Flow Measurement and Instrumentation

journal homepage: www.elsevier.com/locate/flowmeasinst

Machine learning approach to construct global phase-averaged flow field
based on local flow features

Check for
updates

a,b a,b,*

Xin Wen™", Ziyan Li*", Jiajun Liu™", Wenwu Zhou™", Yingzheng Liu

@ Key Lab of Education Ministry for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai,
200240, China
Y Gas Turbine Research Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China

ARTICLE INFO ABSTRACT

This paper reports a new approach toward constructing a full-domain phase-averaged flow field; the approach
applies particle image velocimetry (PIV) measurement without referring to time-resolved signals. This approach
is a departure from the conventional phase-averaging method based on proper orthogonal decomposition (POD).
The POD-based method requires the full flow field to be covered during the measurement, which can result in a
low spatial resolution. The proposed method combines multiple local flow fields in different subdomains with
high spatial resolution to construct a full phase-averaged flow field. The local flow fields are phase-identified
using a machine learning approach, namely, k-nearest neighbor (KNN) classification. Prior to the classification,
the full flow fields are first measured with low spatial resolution and then phase labeled by POD analysis. Then,
the full flow fields are divided into multiple local flow fields. The major flow features of the phase-labeled local
flow fields are extracted by POD again. And, the produced POD coefficients serve as training samples.
Subsequently, the new local flow fields are measured with high spatial resolution and then phase-identified by
comparing to the training samples using KNN classification. Finally, a full-domain flow field is constructed by
combining the phase-averaged local flow fields with high spatial resolution. In the application of KNN, the
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training samples can be better differentiated in a high-dimensional space defined by the POD modes.

1. Introduction

As a commonly used optical measurement technique, particle image
velocimetry (PIV) has facilitated convenient quantitative measurements
over entire flow fields. For measuring periodic or quasi-periodic flow,
phase averaging is an important step in the post-processing of PIV data.
By averaging multiple instantaneous flows of the same phase, the
dominant dynamics and consequently the statistical information of the
flow field can be obtained. However, it is highly challenging to obtain
the phase indicators of an instantaneous flow field owing to the low
temporal resolutions of a standard PIV system [1]. In this regard, a PIV
result can be phase-identified using additional time-resolved reference
signals. However, the pointwise reference signal generally exhibits high
fluctuations, phase jitter, and interruption to the flow field. Proper
orthogonal decomposition (POD), which does not require time-resolved
signals, is a popular method based on the major flow features of the
global flow field. The phase indicators of instantaneous flow fields can
be calculated in a space defined by the first two POD modes. However,

it still exhibits a limitation and requires the full flow field to be covered
during the PIV measurement for capturing the two dominating POD
modes. This requirement generally results in a low spatial resolution of
the measurement. Accordingly, a method to obtain a full phase-aver-
aged flow field with high-spatial resolution without requiring time-re-
solved signals is highly desirable.

Various efforts have been undertaken to obtain time-resolved sig-
nals while conducting PIV measurement. For example, in a previous
study on the vortex shedding process in bluff-body flow, the time-re-
solved velocity at a fixed position in the downstream wake was cap-
tured by hot wire anemometry to facilitate the phase-averaging process
of PIV data [2]. Recently, this method has also been used in the PIV
measurement of a self-oscillating sweeping jet [3]. By using pressure
sensors to obtain time-resolved reference signals, the phase-averaged
flow fields of a sweeping jet were effectively captured by PIV [4]. Al-
though this method can be implemented conveniently, it exhibits sev-
eral limitations. First, the pointwise reference signal generally exhibits
high turbulent fluctuations and measurement errors. Notwithstanding
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Fig. 1. Outline of phase identification of local flow field (right part) using KNN (middle part) by learning from full-domain flow field (left part).

Table 1

Parameters of fabricated pattern.
n a b B 14 f
1 0.03 0.05 2 1 0.25
2 0.0075 0.0125 2 1 0.25

the use of low-pass or band-pass filters, the filtered signal occasionally
fail to provide suitable phase indicators owing to large fluctuations in
the flow fields. Secondly, the reference signal extracted from a local
location is required to capture the major dynamics of the periodic flow
field. This requires the sensors to be placed in appropriate locations.
However, this requirement generally cannot be satisfied owing to the
constraints of the experimental setup or in order to prevent the inter-
ruption of the flow field. Therefore, it becomes less relevant as the
distance from the most suitable location increases, resulting in the
problem of phase jitter [5,6].

In order to overcome the above limitations, efforts have been made
to accomplish phase identification based on the global flow field
without requiring the time-resolved reference signal [7]. A commonly
used method is based on POD analysis [8,9]. Using POD decomposition,
the dominating flow features can be extracted in the first several POD
modes [10-12]. The POD coefficients can be obtained by projecting the
instantaneous flow fields on a POD space defined by the modes.
Therefore, the temporally-changing coefficients reflect the oscillations
of the flow field between the POD modes [6]. observed that for a quasi-
periodic flow, the coefficients of the first two modes tend to form a limit
cycle in the phase plane and used this feature to extract the vortex
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shedding phase in a square cylinder wake. Similarly, with regard to
capturing the phase-averaged motion of the sweeping jets [3], observed
that the POD method yielded results remarkably in agreement with
those of the reference signal method. Although this POD method is a
simple and accurate tool without requiring time-resolved data, it ex-
hibits limitations. In order to identify the first two dominating POD
modes, it is necessary to cover the full flow field within the measure-
ment view. However, this requirement is generally satisfied at the cost
of the spatial resolution of the PIV measurement. The resolution dete-
riorates further when the field of view cannot fit the camera sensor
geometry. To obtain a high spatial resolution, the measurement is
generally focused to the subdomains to capture the local flow fields.
The multiple local flow fields can be phase-averaged and combined
together to construct a full flow field. However, without time-resolved
reference signals, it is highly challenging to phase-identify the local
flow fields.

With the rapid development of data science, machine learning and
data fusion techniques are attracting interest in the field of fluid dy-
namics [13-16]. In the post-processing of experimental data, data fu-
sion has been used to combine different data sets to extract information
that cannot be obtained from individual data sets. Recently [17], suc-
cessfully recovered a clean and spatially resolved pressure field by
fusing highly-noisy albeit spatially resolved data obtained from fast
pressure sensitive paint and clean albeit scattered data obtained from
microphones. While applying PIV measurement [18], constructed a full
field of velocity data by fusing two sets of incomplete complementary
measurement. Here, two types of PIV data sets can be fused together to
obtain a full phase-averaged flow field with high spatial resolution. A
data set is obtained by measurement covering the whole velocity field
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Fig. 2. Instantaneous fabricated patterns.

with a low spatial resolution. Therefore, the instantaneous full flow
fields can be phase identified by POD analysis. The full flow fields are
then divided into multiple local flow fields that produce training sam-
ples in a POD space. The other type of data sets is obtained by mea-
suring multiple local flow fields in different sub domains with a high
spatial resolution. The local flow field can be phase identified using a
machine learning approach based on the training samples. Finally, the
high-resolution local flow fields can be phase-averaged and combined
together to construct a full flow field.

In this study, k-nearest neighbor (KNN) classification was used to
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phase label the local flow fields. Both synthetic convecting patterns and
PIV data of a sweeping impinging jet were used to demonstrate the
capability of this method.

2. Methodology

Fig. 1 presents the overall procedures of this KNN-based method.
The procedure generally consists of two steps. In the first step, the full
flow fields are measured with low-spatial resolution (left top of the
figure). The POD analysis is then applied to obtain the coefficients of
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Fig. 5. POD analysis of local flow fields in subdomains.

the first two POD modes. The coefficients form a limit cycle in the phase
plane and are used to calculate the phase identicators 8. The phase-
labeled full flow fields are then split into multiple local flow fields (left
bottom of the figure). Similarly, the local flow fields are also analyzed
by POD. In the local flow fields, only the first two POD modes cannot
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effectively capture the major flow features. Accordingly, the POD
coefficients no longer form a limit cycle and cannot be used directly to
identify the phase. Meanwhile, the phase labels of the local flow fields
are transferred from the full flow fields. Subsequently, the POD coef-
ficients of the phase-labeled local flow fields are used as training
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samples in the KNN. To better differentiate the training samples, the
local flow fields are projected into a space with higher dimensions
defined by the POD modes. In the other step, multiple measurements
are conducted only in the local flow fields with a high-spatial resolu-
tion. The high-resolution PIV measurement can be temporally down-
sized to a low resolution similar to those in the first step. Then, the low-
resolution local flow fields are projected on the same POD space. The
obtained POD coefficients are used as new data. Based on the distance
to the new data in the POD space, the closest k training samples are
selected to identify the phase of the new data in KNN. After the phase
identification, the phase labels f3 are transferred to the high-resolution
local flow fields. This procedure is repeated in the other subdomains.
The local flow fields with high-spatial resolution are then phase-aver-
aged. Finally, the local flow fields in multiple subdomains are combined
together under the same phase angle to construct a full flow field.

2.1. POD analysis

The POD analysis method [19] is a commonly-used tool to extract
major flow features from unsteady flow fields [20,21]. In the present
study, the “snapshot” POD method [22] is used. In this POD, an in-
stantaneous flow field U(t), obtained from a data set U, can be de-
composed into the following form:
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n
Uu@)=U+ Wa;,
0] Z:, i o
where U is the long-time mean flow field, ¥ represents the spatial POD
modes, a represents the corresponding POD time coefficients, and n
represents the number of snapshots used in the calculation. In the POD
analysis, W and a can be calculated using single value decomposition as
follows:
(¥, VA , a) = svd(U), (@)
The eigenvalue A is the energy captured by the POD mode W¥. The
POD modes are then sorted in the descending order of energy content.
For a periodic or quasi-periodic flow, when the major flow dynamics
are captured by the first two POD modes, the periodic flow behaviors
can be considered as a harmonica oscillation between the first two
modes [3]. Accordingly, the first two POD coefficients share the sinu-
soidal fluctuation, albeit with a phase difference of approximately /2.
Based on the first two coefficients, the phase angle of each in-
stantaneous flow field can be calculated as follows:

a ()24
(2%

The phase angle can be obtained without the time-resolved re-
ference signal. However, the prior assumption of the POD-based
method is that the major flow features can be captured by the first two
POD modes. The mathematical background of this method is discussed
in detail by Ref. [23].

B(t) = arctan
3

2.2. KNN classification

KNN classification is the key component of this method for fusing
the full flow field with low spatial resolution and local flow field with
high resolution. Compared to other commonly used methods in the
machine learning toolbox, KNN has the notable advantages of very
rapid training and learning of complex functions. In a KNN for classi-
fying a new input data, the k closest training samples are examined and
the new data are classified based on the class of the selected training
samples. To calculate the distance between the new data and the
training samples, Euclidean distance is used in the current KNN as
follows:

m
— p 1/2
d= Z (arﬁew - atraim'ng)
p=1

4

where m is the number of POD modes used (or the dimensions of the
POD space); aft,, is the coefficient of the new local flow field, which is
projected on the pth POD mode. Similarly, af,,, is the coefficient of
the training data. Note that because the used POD modes capture dif-
ferent energy as indicated by the different values of A, a? accordingly
exhibits distinct standard deviations along different dimensions. For
example, the first POD mode exhibits the highest energy. Accordingly,
a' exhibits the highest standard deviation. These dimensions can be
standardized to equalize their importance. However, they are not
standardized in the proposed method because the different standard
deviations reflect the weight factors of the different dimensions.
Similarly, the k closest training samples are also weighted. The weight
factor is inversely proportional to the distance between the new data
and the training sample. Finally, the phase angle of the new data can be
determined by the k closest training samples using the weighted dis-
tance voting as
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where B, is the determined phase of the new data, d? is the square of

the distance from the new data to the Ith training sample, and §; is the
phase of the Ith training sample. A fundamental requirement for KNN is
a large number of training samples for achieving classifications of fine
resolutions. This requirement is conveniently satisfied in the experi-
ments in fluids. Compared to the time-consuming experimental setup
and data post-processing, it is highly convenient to conduct multiple
runs of experiment to collect adequate training samples.

3. Setup of simulation and PIV measurements

As proof-of-concept, this KNN-based approach is first applied to
fabricated data. Subsequently, it is applied to the PIV measurement of a
sweeping impinging jet. This section describes the setup of the simu-
lation and the measurement.

3.1. Fabricated patterns

A series of fabricated patterns are constructed to simulate con-
vecting patterns comprising multiple structures. Here, the method
proposed by Ref. [24] is applied to generate integrated patterns as
follows:

j=2
F = Z q
J=0 (6)
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o (=m0t 2]
“@= 2 e exp[ ( d, ) dn]’ "l ®)
m= co _ _ 2 _
0 = (—1)’"exp[—((x 6,,21 %t) )_ 6] d0.3)z]’ o,

)]

where x and y are the streamwise and spanwise dimensions, respec-
tively. The diameters of the convecting structures are defined by
d = ax + b, where a and b are constants. The dominating convecting
structures in q; are designed to have a large diameter, whereas g, has a
significantly smaller one. The integrated convecting patterns have
multiple major dimensions in POD space, which will be illustrated later.
The distance between the structures and the convection velocity are
determined by § and y, respectively. The two structures have identical
frequency determined by f= y/(28). The parameters of the fabricated
patterns are listed in Table 1. Fig. 2 shows the evolution of the in-
tegrated fabricated patterns.

3.2. Experimental setup

To test this approach using real-world data, PIV measurements are
performed on the unsteady flow fields of a sweeping imping jet in a
water tank, as shown in Fig. 3. The sweeping jet is issued from a fluidic
oscillator, which has an interaction region and two lateral feedback
channels. Inside the fluidic oscillator, the main jet is attracted to a
sidewall in the interaction region owing to the Coanda effect. A small



X. Wen, et al.

@) t=to+1.0T

Fig. 8. Instantaneous flow fields of sweeping impinging jets.

portion of the main jet stream returns to the oscillator's inlet through
the feedback channel and pushes the main jet to the opposite side. As a
result, the jet issuing from the oscillator exhibits a periodic sweeping
motion in the transverse direction. Owing to the self-sustained oscilla-
tion motion without requiring any moving part, sweeping jets are at-
tracting interest in the application of impingement [25-28]. Owing to
the self-sustained oscillation, it is also significantly challenging to ob-
tain the phase-averaged flow fields without a time-resolved reference
signal. Although the POD method can be used, it requires the whole
flow field to be covered, which can result in a low spatial resolution.
Therefore, the proposed approach is tested to obtain full phase-aver-
aged flow fields of the sweeping impinging jet with high spatial re-
solution.

The experiment is performed in a water tank, as shown in Fig. 3. The
fluidic oscillator has a square exit with a hydraulic diameter of
Dy, = 10 mm and is placed at the center of the tank. Water is channeled
from an overhead settling chamber and impelled by gravity into the
oscillator. The flow rate is regulated by a flowmeter monitor. The origin
of the coordinate system is set at the center of the jet nozzle, with the x-
and y-axes pointing in the jet's axial and transverse (corresponding to
the jet's sweeping motion) directions. To facilitate the PIV
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measurements, glass beads (p = 1050kg/m> d = 10 um) are used as
tracer particles in the entire water tunnel. The tracking particles are
illuminated using an 8-W continuous-wave semiconductor 532-nm laser
(MGL-N-532a-5w, CNI). A high-speed camera (dimax HS4, pco.) is
applied to capture images in the area of interest, which spanned
y = = 15D, and x = 0-8D;, with an aspect ratio of approximately
3.8:1. Then, a multigrid cross-correlation technique in combination
with subpixel recognition by Gaussian fitting is applied on the particle
images. With a final interrogation window size of 32 X 32 pixels and
50% overlap, the PIV measurement yields a resolution of approximately
0.3D;, Details of the PIV measurement are available in the authors'
previous reports [27]. The obtained 14,400 full flow fields with high
spatial resolution are then used as the data pool to examine the KNN
phase identification. Half of the flow fields are down-sized to a low
resolution using an interrogation window of size 64 X 64 pixels. Then,
they are divided into the local flow fields, yielding the training samples.
Similarly, the remaining flow fields are used to generate the new data to
be phase labeled.

4. Results
4.1. Fabricated patterns

Before addressing real PIV data, the KNN phase identification
method is applied on the fabricated patterns. Note that the key step of
KNN classification is focused upon here. The process of down-sizing
high resolution flow fields to low resolution is excluded. Therefore, all
the available data is treated as low-resolution data. As the first step in
this method, POD analysis is applied on the full-field data. As shown in
Fig. 4a and b, the first two modes capture similar flow features with a
phase shift of approximately 1/4 of the wavelength. Therefore, the
normalized coefficients of the first two modes form a limit cycle as
shown in Fig. 4e. These coefficients are used to identify the phase an-
gles of the full field based on Eq. (3). Here, it is noteworthy that the
third and fourth POD modes also capture notable flow features, as
shown in Fig. 4c and d; these can be used later in the phase identifi-
cation of the local flow field.

The full flow fields are then divided into four subdomains as shown
in Fig. 5a. Subsequent to the POD analysis on the local flow fields, the
coefficients of the first two POD modes cease forming a cycle and ex-
hibited distorted shapes, as shown in Fig. 5b—e. This is because the first
two POD modes cannot effectively capture the major flow features of
the local flow fields. For example, in the first subdomain, both the
coefficients can have values approximately equal to zero as indicated by
the black arrows in Fig. 5b. This occurs when only very weak flow
structures are captured by the first two POD modes. Owing to the dis-
torted shape, the first two coefficients cannot be used in conjunction
with Eq. (3), to identify the phase of the local flow field. Rather, the
phase labels of the full flow fields are transferred to the POD coeffi-
cients of the local flow fields, which serve as training samples in the
subsequent KNN classification. In order to achieve a fine resolution of
the phase classification, the size of the training samples need to be
adequately large. However, the large number of training samples can be
closely gathered and overlap with each other. This hinders the differ-
entiation of the samples. We consider subdomain #1 as an example; as
shown in Fig. 6a, each training sample consists of only two POD coef-
ficients. The problem of overlapping is apparent as indicated by the red
arrows in the two-dimensional space defined by the first two POD
modes. This overlapping problem can be solved using a POD space with
higher dimensions. As shown in Fig. 6b, each training sample consists of
three POD coefficients. Therefore, the samples can be better differ-
entiated in the POD space defined by the first three modes. Note that
the POD space can have higher dimensions using more POD modes.
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Fig. 9. POD analysis of full flow fields of sweeping impinging jet.

However, the higher dimensions cannot be effectively visualized.
Then, the new local flow fields in the four subdomains are phase
labeled using a KNN based on Eq. (5). In the KNN, 3600 instantaneous
local flow fields with phase labels are used to produce training samples
to achieve a fine resolution of phase identification (up to 21/120).
There are 60 training samples under each phase interval. The training
samples have 10 dimensions defined by the first ten POD modes.
Therefore, each training sample consists of the first ten coefficients.
Weighted by the distance reverse-proportionally, the five closest
training samples are used to classify the new data. To evaluate the
performance of the KNN classification, the new local flow fields are
phase-averaged and compared with the phase-averaged velocity ob-
tained based on the full-field POD method. The phase-resolved velo-
cities are extracted from the four subdomains as shown by the black
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dots in Fig. 5a. As shown in Fig. 7, the phase-averaged velocity obtained
from the KNN is highly consistent with that obtained from the POD
analysis, indicating the good performance of this KNN classification
method.

4.2. PIV data

Subsequently, the KNN classification method is applied to the PIV
data of sweeping impinging jets. In the first step of the KNN method, the
flow fields are downsized to yield low-resolution full fields, as shown in
Fig. 8. The sweeping jet evidently exhibits a periodic flow behavior
albeit with high fluctuations. Then, POD analysis is applied on the full
flow field. As shown in Fig. 9a and b, the first two POD modes capture
the major flow features in the near exit region (in mode 1) and in the
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near wall region (in mode 2), respectively. The coefficients of the first
two POD modes form a limited cycle, as shown in Fig. 9e. Note that this
cycle is not as uniform as that obtained using fabricated data, due to the

Flow Measurement and Instrumentation 67 (2019) 41-54

OV & PP P ad =y
g s P T ik -
v oot 020 &\~
o BTG s 1 V0 S SR
L S A (N 8 5 SRR SR
L Y T AL I S B N
Y A SN aSS s
v T T T T B T
%N Y AN %N
2T O O T I S TS
Eh NG e NN
L T A RO
NWNR P ey N
i A ANNS N
xéll'i\1l2’uL\

0.03 —————r T ——— 1 003 — ——r
0.02 | 4 002 | 4
0.01 | 4 0.01 | 4
= o = 9
i Z
o o
001 | . 001 |
002 | N 002 | N
0.03 . L el 1 L 003 1 P RIS R | M .
2003 002 001 0 001 002 003 2003 -002 -001 0 001 002 003
a, 1(21,) a, /(21,)
(b) Subdomain #1 (c) Subdomain #2
0.03 —— ‘ — 0.03 —— ————————
0.02 3 002 | 4
0.01 | 4 001 | 4
= o Ea
i =
o o
001 | . 001 |
002 | - 002 | .
i 1 r 2L 1
0.03 . L 0.03 . TR WL T W P R
2003 002 001 0 001 002 003 2003 -002 -001 0 001 002 003
a, 1\(22.,) a, /(21,)

(d) Subdomain #3

(e) Subdomain #4

Fig. 10. POD analysis of local flow fields of sweeping impinging jets.

distortion of the periodic sweeping motion of the jet. Nevertheless, it
still can be used to phase identify the instantaneous full flow field. Note
that the third and fourth POD modes also capture notable flow

50



X. Wen, et al.

n

GRE SN REEURR EALEE

SELELELE SN JLELELE

|
(T e G

ULELEE SRS RS SLE

,...I....I....l..nl....l.“.

EWEE P

2 a4 0 1 2
a1

S FEEEE S

-3

w

(a) Two dimensions

(b) Three dimensions

Fig. 11. Training samples in different POD space. The scatters of the training
samples are colored by the phase angle. The overlapping problem in two di-
mensions can be mitigated in three dimensions.

structures, which can be used to define a higher order POD space
subsequently. The phase-identified full flow fields are then divided into
four local flow fields as shown in Fig. 10a. By conducting POD analysis
on each local flow field, the first two POD coefficients cease forming a
circle and exhibited distorted shapes, as shown in Fig. 10b—e. The phase
of the full flow field is then transferred to the local flow fields. Then, the
POD analysis is applied on the phase labeled local flow fields, produ-
cing coefficients as the training samples. Owing to the large number of
training samples (7200 instantaneous local flow fields), the overlapping
problem is more severe than that in the fabricated data. As shown in
Fig. 11a, the training samples are colored by the phase angles. The
training samples of green color overlap with those of yellow color in the
two-dimensional space defined by the first two POD modes, as indicated
by the black cycle. Similar to that for the fabricated data, this over-
lapping problem can be solved using a higher-order POD space. As
shown in Fig. 11b, by projecting the local flow fields on the first three
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POD modes, each training sample consists of three POD coefficients.
The samples can be differentiated significantly more effectively, as il-
lustrated by the stereo view.

In the second step, the high-resolution local flow fields are down-
sized to resolutions similar to those in the first step. Then, the low-
resolution local flow fields are phase-identified based on the KNN
classification. After a convergence test, it is found that the POD mode
number and value of k have converged effect after 10 modes and k = 3.
Therefore, in the KNN, a POD space defined by 20 modes and k = 5
closet training samples are used. In the KNN, a POD space defined by 20
modes and k = 10 closet training samples are used. After the phase
identification, the low-resolution local flow fields are phase-averaged.
Then, the phase-averaged results are compared with those obtained by
the full-field-POD-based method. The phase-resolved velocities are ex-
tracted in the four subdomains, as indicated by black dots in Fig. 10a.
As shown in Fig. 12, the results are reasonably consistent in all the
subdomains. Then, the difference between the phase-resolved velocities
obtained using the KNN method and POD method at the selected po-
sitions is used to examine the influence of the two key parameters, i.e.,
the size of the training samples and the dimensions of the POD space.
The mean squared error (MSE), which is commonly used to examine the
accuracy of a machine learning model, is averaged during a cycle as
illustrated below:

MSE = L % (atKNN _ L—ltPOD)Z

120 &~ (10)
where i,X™ is the phase-averaged velocity obtained using KNN,
whereas #,7°P using full-field-POD method. As shown in Fig. 13a, the
error deceases with the increase in the size of the training samples. This
is consistent with the fact that a large amount of data is required to
resolve a fine classification in KNN. The impact of the dimension of the
POD space is shown in Fig. 13b. The error generally decreases with an
increase in the space dimensions, particularly at the beginning from
two dimensions to three dimensions. This verifies the previous ob-
servation that the training samples can be more effectively differ-
entiated in a POD space with a higher dimension.

Then, the new local flow fields with high-resolution are phase-
averaged and combined together to construct a full flow field. The
constructed flow fields are compared with those obtained based on the
POD analysis of the full flow field in the data pool. As shown in Fig. 14,
the constructed flow fields agree very well with the POD-obtained re-
sults in most of the selected phases; an exception is at t/T = 0.25. As
shown in Fig. 14a, there is an evident jagged edge of the jet column
around y = 0 and x = 2Dj. A comparison of the POD-obtained flow
field illustrates this to be a result of the improper phase-alignment of
the local flow field in subdomain #4 (right below part of the flow field)
with the other flow fields. The physics behind this ill-classification is
that the flow features are excessively weak in this subdomain in this
phase. Therefore, it is highly challenging to accurately identify a very
weak flow with limited information. To overcome this problem, the
areas of the subdomains are enlarged in order to capture adequate flow
features. As shown in Fig. 15a, the boundaries are extended by 3Dy in y
direction for all the four subdomains. The constructed flow fields are
significantly improved, which agrees very well with the POD-obtained
flow field at t/T = 0.25.

5. Conclusion

In this study, a new algorithm based on KNN classification was
developed to reconstruct a full phase-averaged flow field with high
spatial resolution, without requiring time-resolved reference signals. In
this method, two datasets are fused together: one covers the global flow
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Fig. 13. Effect of key parameters in KNN phase-identification.

field albeit with a low spatial resolution, whereas the other covers
multiple local flow fields in different subdomains with a high spatial
resolution. The global flow fields can be phase-identified by POD ana-
lysis to produce the training data in a POD space. Then, the local flow
fields are phase-identified by referring to the training data. Finally, the
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local flow fields in the different subdomains are phase-averaged and
combined to construct a full phase-averaged flow field with a high
spatial resolution.

Synthetic data and the PIV data of a sweeping impinging jet were
used to demonstrate this approach. The application of KNN



X. Wen, et al.

Flow Measurement and Instrumentation 67 (2019) 41-54

(d)t/T=1.0T

Fig. 14. Comparison of phase-averaged flow fields reconstructed based on KNN on local flow fields (left) and based on POD analysis of full flow fields (right).

classification requires a larger amount of training data to achieve a fine
resolution of the phase angle (here, up to 2m/120). The overlapping
problem of the training samples is solved by using a high-dimensional
space defined by the POD modes. By selecting appropriate parameters,
i.e., the size of the training data and the dimensions of the POD space,
the mean squared error can be reduced to below 0.001 by comparing
the phase-resolved velocity obtained from the KNN classification and
that from the traditional POD analysis.

In the present cases of demonstration, the full flow fields are equally
divided into four local flow fields for convenience. In real-world ap-
plications, the division of the full flow field can be varied and opti-
mized. As illustrated in the demonstration of PIV measurement, the size
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of the subdomains should be adequately large to capture sufficient local
flow features. Therefore, the criterion value of the subdomain size is
closely related to the flow behaviors and can change from case to case.
However, as demonstrated in this study, the division of the subdomains
can be adjusted through trial-and-error by referring to the low-resolu-
tion full flow fields. In addition, this method can find wide applications
in other fields. For example, it can be used to fuse different numerical
model output of ocean circulation together based on the large scale flow
features of the ocean circulation.
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